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by Ibraheem Khan

1 Equinumerous Sets

Definition 1 Equinumerous Sets Suppose A and B are sets. We’ll say
that A is equinumerous with B if there is a function f: A→ B that is one-to-one
and onto, that is, it is a bijection. Let A ∼ B denote that A is equinumerous to
B. A set A is finite if there exists some n ∈ N such that {i ∈ Z+ | i ≤ n} ∼ A.

Essentially, if there is some sequence of or some selection of positive in-
tegers that are less than n and we collect these numbers into a set and also if
this set is equinumerous to our set A, then set A is finite. Otherwise, A is an
infinite set. Its cardinality, however, is not to be conflated with this notion of
infinity. Finite cardinalities simply refers to the number i in finite sets as it is
merely the number of elements in a set. However, in infinite sets cardinalities
must be found via investigation of such bijections. Further, it is known that ∼
is an equivalence relation as it is reflexive, symmetric, and transitive. Refer to
the notes done in class from Book of Proof for other trivialities, (such as finding
particular one to one correspondences).

We now expand our notion of countable sets as being denumerable sets-
that is sets A ∼ Z+ or those that are finite. Uncountable sets will be defined as
those that are not countable. Uncountable sets are not necessarily sets whose
cardinalities are equivalent to R.

Here are some interesting equivalent statements:

1. A is countable.

2. Either A = ∅ or there is a function f: Z+ → A that is surjective.

3. There is a function f: A → Z+ that is bijective.

Theorem 1 Statements 1, 2, and 3 are logically equivalent

1 =⇒ 2

A is a countable set. Thus, either A is denumerable or finite. Suppose A is
denumerable. Then, by definition, there is a bijection f: Z+ → A. Now, suppose
A is finite. Thus, its cardinality is either ∅ or some number n as defined above.
If |A| = ∅ then clearly the first conditional in the OR proposition is true. If
it is not, then |A| = n. We want to prove that there exists some surjective
function from the positive integers to A given that |A| = n. Intuitively, we want
to map all elements of the positive integers to all elements of A. This can be
done by constructing the following set G: {i ∈ Z+ | i ≤ n}. Now, let G → A be a
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bijection, g, given n is the number of elements of A. To clarify this construction
see the above definition of finite. Let a ∈ A. Now, we define f : Z+ → A :

f(i) =

{
g(i) if i ≤ n
a0 if i > n

Clearly, this function is surjective as all A is mapped. The function g sim-
ply assigns positive integers to our set. For example, one such assignment, or
mapping, would be {1,2,3,4,5} to a set A={Apple, 5, Photon,

∏∞
i=1 ζi, Reader}.

Clearly, the set A is a rather exotic set but G simplifies the set down to ordered,
positive integers via the function g−1. We know the inverse exists as we know
g is a bijection.

2 =⇒ 3

If A is the null set, then the empty set itself is the bijection from A to Z+.
To explore the intricacies of this we will explore the various subtleties of empty
sets and empty functions.

Definition 2 Empty Sets Empty sets are the unique sets having no elements
with cardinality zero. Many statements regarding sets and other mathematical
objects vacuously hold true. Empty sets hold the following properties ∀ sets A:

1. ∅ ⊆ A

2. A ⊆ ∅ =⇒ A = ∅

3. A ∪∅ = A

4. A ∩∅ = ∅

5. A×∅ = ∅

6. P(∅) = 2∅ = {∅} (that is, the set containing the null set)

We will not consider the various set theory and ontological ideas surround-
ing the notion of the empty set and nothingness in general. Instead, we shall,
for now, push on to describe the empty function from the definition of a function
itself:

∀z(z ∈ F =⇒ ∃x∃y(z = {{x}, {x, y}})∧∀x(∃z∃y(z ∈ F∧z = {{x}, {x, y}}) =⇒

(∀u∀v(∃z∃w((z ∈ F∧w ∈ F∧z = {{x}, {x, v}}∧w = {{x}, {x, u}}) =⇒ u = v)

I will give credits to Asaf Karagila on StackExchange for this defini-
tion. The key to understanding this lies in understanding the logical bounded
quantification of statements as ∀x ∈ A(P (x)) which really should be read as
∀x(x ∈ A =⇒ P (x)). One must recall the truth table of implications which
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show that the statement is only false when the condition is true but the resolu-
tion is false. So to provide an explication of our above definition of a function,
it states that we have some condition. This condition is true only when two
subconditions are true given the logical AND conjunction. The first subcon-
dition states that for all elements z that are in the function F . Now note the
following:

F : D → C =⇒ F ⊆ D × C
Thus, we can see that functions are in fact binary relations, that is a

collection of ordered pairs, such that it is a subset of the cartesian product of
the domain and codomain. Since functions are in fact binary relations they are
also sets, specifically, a set having all its elements be ordered pairs. According
to Kuratowski, ordered pairs are defined as

(x, y) = {{x}, {x, y}}

Note, this definition then avoids the problem of ordering the numbers in the
pair. Thus, z is an element of F and since it is an element of F it is an ordered
pair. Now, for all such z, if z is an element of F , then it is implied that there
exists some x and y such that the definition of an ordered pair is satisfied for
z. The second subcondition states that for all x there must exist z and y such
that the ordered pair is formed. In effect, the condition essentially states that
we have a function composed of elements z, that z is defined as such, and that
we have fixed our elements x, or really our left-coordinate.

The implication then leads us to show that given this information, for
every right-coordinate x, there will only be one such corresponding y or right-
coordinate in the only possible ordered pair for that x. That is, if we have two
right-coordinates u and v and we have ordered pairs (x, u) and (x, v) then u = v.
This agree with out intuitive definition of a function in that if we some X ∈
D(F ) then there is a unique Y ∈ C(F ) such that XFY or really that (X,Y) ∈ F .
Now, the empty function is a function much in the same way that the empty
set is a set of real numbers or elephants. The set contains no elements so it may
vacuously hold true for any restriction including the definition of functions as

• The empty set is a collection of ordered pairs

• The empty set has no ordered pairs

• x is the fixed left coordinate of these non-existent ordered pairs

• The condition then vacuously holds true

• No left-coordinate has no two or more equal right-coordinates in ∅ as ∅
has no (x, y)

• The implication holds true, thus ∅ is a function.

Thus, the empty set is indeed a function- in particular it is the unique
empty function for some set S where

∅ : ∅→ S as ∅× S = ∅
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Now, it is important to note that this function is always surjective. This
is easy to see as any function from ∅ to some set A has to be a subset of the
Cartesian product between the two, but the cartesian product of ∅ with A
is equal to the function ∅. Thus, ∅ is always a surjection. To clarify, I will
be referring to ∅ as any particular function that is a member of the class of
functions f : ∅ → A ∀A. Injectivity vacuously holds as well due to the fact
that if given f(x) = f(y) =⇒ x = y as no such (x, y) exist for the empty
function. Thus, ∅ is always a bijection.

Now, with that excursion out of the way we may continue on with the
proof that 2 implies 3. Now, we suppose g: Z+ → A is a surjection. Then
an injection I: A → Z+ necessarily exists by the well-ordering-principle (least
integer principle) as for any instance where g(n) = a we may select the smallest
n and define I(a) = the smallest n for which g(n) = a. Further, g ◦ I = ia that
is g composed with I is the identity map on set A. This too implies that I is
one-to-one.

3 =⇒ 1

We now show that if there is an injection from some set to the positive
integers (or natural numbers) then the set is countable- that is, it is denumerable
or it is finite. Now, since I is one-to-one D(I) ∼ C(I). Further, D(I) = A and
C(I) ⊆ Z+. Thus, since the set of positive integers is countable, a subset of it is
countable, and so since the domain of our function has the same cardinality as
this subset of the positive integers that is the codomain of our function it too
must be countable. And so, our proof of the given theorem is complete. �

2 Properties of Infinite Sets

We will now prove that: A × B and A ∪ B are both countable if both
A and B are countable. Obviously, if either A or B is uncountable then their
Cartesian products and unions are also uncountable. Since A and B are both
countable there exists functions f :A→ Z+ and g:B → Z+. Now, clearly, if the
sets are finite their product is finite but if they are denumerable there is more
to be said, that is why we imply the denumerability of our sets as we can then
assert that the functions f and g are one-to-one and onto. Thus, to prove that
A × B is countable we simply show that Z+ × Z+ is denumerable as we can
define a function h:A × B → Z+ × Z+. We know this function is one-to-one if
defined as follows:

h(a, b) = (f(a), g(b))

It is easy to show that is a surjection as f and g assure all of Z+ and
any combination of (a, b) may be chosen. Injectivity can also be easily shown
as f and g are also both injective. Thus we must show that Z+×Z+ is countable.

Theorem 2 Z+ × Z+ is countable
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To show that Z+×Z+ is countable we will use the Cantor-Pairing function
which is defined as

π : Z+ × Z+ → Z+

π(a, b) =
1

2
(a+ b)(a+ b+ 1) + b

To prove that this is a bijection, we may simply find the inverse of this
function. Let π(x, y) = z = t+ y where w = x+ y and t is the triangle number
of w- that is t = 1

2w(w+ 1). Thus, we must solve for x and y from z. Note that
x and y are natural numbers, thus, so must be w as well as t and hence z. Now,
note w2 + w = 2t so if we solve the quadratic equation

w2 + w − 2t = 0

We find that

w =

√
8t+ 1− 1

2

This function is strictly increasing. We then show the follow inequalities:

t ≤ z = t+ y

t+ w + 1 = t+ x+ y + 1 = (t+ y) + x+ 1 > z

t+ (w + 1) =
(w + 1)2 + (w + 1)

2

Thus, we may note that

w ≤
√

8z + 1− 1

2

We will now prove that

w ≤
√

8z + 1− 1

2
< w + 1 =

(
√
8t+1−1

2 + 1)2 + (
√
8t+1−1

2 + 1)

2

Expanding we get

−2
√

8t+ 1
√

8t+ 8y + 1 + 16t+ 8y + 2 < 2t+
3

2

Note √
8t+ 8y + 1 >

√
8t+ 1

Thus, we may replace the
√

8t+ 1 term with
√

8t+ 8y + 1 to prove the inequal-
ity. In doing so we find:

−8y < 2t+
3

2

Which is clearly true. Thus,

w =

⌊√
8z + 1− 1

2

⌋
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We may now solve for x and y in terms of z:

x =

⌊√
8z + 1− 1

2

⌋
− z +

(
⌊√

8z+1−1
2

⌋
)2 + (

⌊√
8z+1−1

2

⌋
)

2

y = z −
(
⌊√

8z+1−1
2

⌋
)2 + (

⌊√
8z+1−1

2

⌋
)

2

Thus the Cantor-Pairing function is invertible and therefore it is a bijection.
This implies that the cartesian product of Z+, which is also denoted, N, with
itself is countable. �

Due to the above theorem the property that the cardinality of the cartesian
products of countable sets is countable has been proven. As a result, the Cantor-
Pairing Function may be generalized with similar properties (one may also prove
these properties via induction):

π(n) : Nn → N

π(n)(k1, . . . , kn−1, kn) := π(π(n−1)(k1, . . . , kn−1), kn) .

We now prove that the union of countable sets is also countable. We first
consider a function h: A ∪B → Z defined as follows:

h(x) =

{
f(x) if x ∈ A
−g(x) if x 6∈ A

While this function is clearly not a surjection (as it fails to map 0) it is
obviously injective. Now, we simply let j: Z→ N be a one-to-one, onto function
and my the preservation of injectivity in compositions we find j ◦h: A∪B → N
is one-to-one. Thus, it must be countable. Bijectivity is not necessary (but is of
course sufficient) to prove countability, refer to Theorem 1. We will now prove
an interesting variant of this idea- that the union of countably many countable
sets is countable. An intuition to this idea might be thinking of even and odd
numbers. The set of evens is infinitely countable as is the set of odds. However,
instead of breaking up the naturals into evens and odds one could break them
up into countably many “even” and “odd” subsets. Consider the following
progression:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30...

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29...

1 5 9 13 17 21 25 29...

1 9 17 25...

1 17...

...
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This one may think of being as an “odd-only” progression. Essentially, I
have created a subset of the natural numbers by selecting “every other element
starting from the first element in the set” or really by selecting the “odd” mem-
bers of the set. However, at each step in the process I had the choice of choosing
the “odd” members or the “even” members. For example, at the second to last
step I could have constructed as follows:

1 9 17 25...

9 25...

...

This would have led to a different subset even if I continued with the
policy of only choosing “odd” members. Thus, we may construct infinitely
many subsets of the natural numbers that in turn have infinitely many elements
as we have infinite choices as we have infinitely many steps in this construction
and two choices at each step: to select the “odd” or “even” members for the
next step-set. Thus, one could think that “after” this infinite process we should
have infinitely many subsets of the natural numbers that have infinitely many
elements. However, since these are all subsets of the natural numbers, then,
should we label each “final” subset S, then we should expect:

∞⋃
n=1

Sn = N

Considering the union of these sets having infinitely many elements is
equivalent to a countable set it would lead us to believe that these sets by
themselves should also be countable. As such, this would provide us the much
necessary intuition to proceed with the proof that the union of countably many
countable sets is indeed countable. Note, that we have countably many infinite
choices as well (we procured each “choice” via a procedural list and as we shall
see list if we can sequence objects then the set of those objects is countable. Fur-
ther one may conceive of this as a choice-tree and labeling nodes on such a graph
is a trivial task, this labeling is in effect forming a sequence). One final formal-
ity to consider in this intuition is the notion of these sets being disjoint.“After”
the process all the sets produced will be disjoint so their intersections will be
the null set. However, the property we aim to prove does not require that the
countably many sets in question be disjoint.

Consider some family of sets (note a family may be contained in a set but
is not a set in and of itself), F that is countable and that every element is F
is also countable. Then ∪F is also countable. Suppose F = ∅ then clearly ∪F
is countable. Now, suppose F 6= ∅. First, let us assume, that ∅ 6∈ F . We can
posit this as we have considered a family of sets as opposed to a set of sets, in
which case, ∅ must be an element of the set. Now, since the elements of F are
countable they can be listed, i.e. indexed by the positive integers. Now, each

7



element in an element of F can also be indexed by positive integers. Thus, we
may write that for a general A ∈ F

Ai = {ai1, ai2, ai3, ...}

Thus, we may further state that

⋃
F =

∞⋃
i=1

Ai = {aij |i, j ∈ Z+}

Now, the task is clear. Now we define the function f : Z+ × Z+ → ∪F :

f(i, j) = aij

Obviously, this function is onto as it maps all possible aij . Now, we know
N × N is denumerable thus we may form the function composition f ◦ g where
g: N×N→ N which will preserve surjectivity, thus we have formed a surjective
function from the positive integers (the naturals) to ∪F and so clearly ∪F is
countable. Now, lets suppose ∅ ∈ F (we assumed it wasnt so that we could
properly index the sets in the family without worrying about indexing null
sets). Then we can define F ′ = F\{∅}. Now obviously this new family’s union
is countable. But this new family is still equivalent to the original family. Thus
the original family’s union is countable.

Note that in this process we formed an infinite sequence and indexed it
with positive integers to prove countability. Less interesting may be considering
finite sequences. However, as we may show the set of all finite sequences of a
countable set is also countable. This, now, is truly an interesting property as
it may entail as Velleman points out that the set of grammatical sentences in
English is a denumerable set! We will first introduce some formality in defining
in what it means to be a finite sequence:

Definition 3 Finite Sequence: A finite sequence of elements of some set A
is a function f : {i ∈ N|i ≤ n ∈ N} → A such that n is the length of the se-
quence and for each i, f(i) = ai = the ith term in the list/sequence. Further,
we may denote that for each n ∈ N, Sn is the set of all sequences of some set A
with length n.

(NOTE: Prior to this area this natural numbers have been equivalent to the
positive integers, we will now, inconsistenly albeit, let 0 be an element of the
natural numbers for purposes of convention).

We now embark upon a proof of this property. We will proceed by method
of induction by first showing that every Sn is countable, then by the previous
property we may show that ∪∞n=0Sn is also countable.

Base Case We will first consider the initial case when we have a null length,
that is n = 0. Then clearly {i ∈ N|i ≤ n ∈ N} = ∅. Then, f is clearly a unique
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empty function. Then, S0 = {∅} which is clearly countable.

Induction Step Our inductive hypothesis shall be that given some n ∈ N, Sn is
countable. We now must show that Sn+1 is countable. Consider the function
F : Sn ×A→ Sn+1 defined below:

F (f, a) = f ∪ {(n+ 1, a)}

In short, for any finite sequence, f ∈ Sn and any element a ∈ A, F (f, a) is the
finite sequence f with a as the (n+ 1)-th element. This function is one-to-one
as f is clearly injective and the (n+ 1)-th element, a, is not mapped by f . This
function is surjective as it will map all possible length n + 1 finite sequences.
Thus, F is a bijection. This implies Sn × A ∼ Sn+1. Both Sn and A are
countable. Thus, their product is countable. But F is a bijection. Therefore,
Sn+1 is countable. Thus, we have completed the inductive proof that all Sn are
countable. By the previous theorem, their union is also countable. And so the
proof is complete.

3 Cantor’s Theorem

Cantor’s Theorem states that the power set of the positive integers, that
is P(Z+) is uncountable. A stronger version of this theorem is that for any set
A its power set has a different cardinality than A. The original version of the
states that given some set A, |P(A)| is strictly greater than A regardless of the
cardinality (even if it is countable/uncountable) of A. We will now prove this
theorem.

Theorem 3 Cantor’s Theorem Let f be a map from a set A to its power
set P(A). Then f : A→ P(A) is not surjective. Thus, |P(A)| > |A| for any set
A.

Proof Consider the subset of A B = {x ∈ A|x 6∈ f(x)}. This is often called the
cantor diagonal set. Now, will f ever map B which is a subset of A and thus a
member of P(A)? No, by definition it never will. Suppose it did, then for some
f(ζ) = B it would imply that this ζ ∈ B because ζ 6∈ f(ζ) as f(ζ) = B but
since ζ ∈ B f(ζ) 6= B. This is a contradiction, thus f is not surjective. All that
there is left to prove is that there is an injective map from A to P(A) which
there is: x→ {x}. �

Now by application of this theorem it is easy to see that the power set of
the positive integers is larger the positive integers and so we have constructed
an uncountable set. By forming an injection with the reals to the power set
of the positive integers we can prove that the reals are uncountable as well as
were they to be countable then there would be a bijection from the reals to the
positive integers. Now were we to compose our injection with this bijection we
would an injection from P(Z)+ → Z+ which would contradict Cantor’s theorem.
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Thus, all we have to show is that there is an injection from the power set of the
positive integers to the reals. This is actually quite simple. Let A ∈ P(A) then
f(A) = dn where

dn =

{
3 if n 6∈ A
7 if n ∈ A

We now proceed to show some interesting results from this basic idea. In
Cantor’s first article he creates a proof showing the existence of transcendental
numbers- that is numbers that are not algebraic and hence unable to be the
solution of a polynomial with integer coefficients. Cantor proves this by showing
that the set of real algebraic numbers is countable. However, this is clearly a
subset of the real numbers. Thus, there must exist non-algebraic, and hence,
transcendental numbers in the reals. Cantor’s original proof is of a constructive
flavor where by he forms ”heights” of polynomials to order them into a sequence
(this flavor may be brought out due to Kronecker’s editorial hegemony). I
present a sketch of an alternate proof here:

1. We may consider all polynomials as being the dot product of two vectors:

[anî+ an−1ĵ + ...a0ẑ] • [xnî+ xn − 1ĵ + ...x0ẑ]

2. Consider the vector of coefficients. We may order all polynomials as fol-
lows. (In this case we will consider integer coefficients as all real algebraic
numbers can be easily reduced to the integers. There is a similar argument
for complex coefficients).

1, 2, 3...
x+ 1, x+ 2, x+ 3, ...

2x+ 1, 2x+ 2, 2x+ 3, ...
...

x2 + 1, x2 + 2, x2 + 3, ...
...

3. With the polynomials ordered we use the Fundamental Theorem of Alge-
bra which states that there are a finite number of roots of a polynomial.
We can then label those roots in a finite sequence.

4. We then use the fact that union of countably many countable sets is
countable as all possible roots of all possible integer (which is equivalent
to algebraic coefficients) polynomials are put in nested countable sets (as
they are all sequenced and ordered).

5. Thus, all the algebraic numbers are countable.

6. Therefore, transcendental numbers must exist. �

10



Cantor forms a similar ordering using his notion of polynomial “height”
which is defined as n− 1 + |a0|+ |a1|+ ...|an|. He orders the polynomials with
height and their roots numerically (as they are finite). In his first article he
also proves that the real numbers are not countable via use of limits to show
that there exists no possible sequence by which one could list the real numbers.
It bears no relevance to Cantor’s theorem and so will be excluded from this
summary paper but it is interesting to note that it is a constructive proof in
that a computer program may be written from it to generate transcendental
numbers (as the algebraic numbers may be put into a sequence as they are
countable).

4 The Cantor-Schröder-Bernstein Theorem

In the theory of integers, by the well-ordering-principle, which is equivalent
to the axiom of choice amongst many other things (induction comes to mind or
the law of excluded middle), it is known that if A ≤ B and B ≤ A then A = B.
Does there exist a similar extension for equinumerality- or equal cardinality?
That is, does there exist a statement that if A . B and B . A then |A| = |B|
no matter the cardinality of the sets involved? It turns out that such a statement
can be proven to be true. Thus, we now begin the process of taking our intuitive
notions from the theory of integers (this is a non-constructive proof, as far as I
am aware Myhill’s theorem is the closest constructive version of this theorem).

In comparisons of cardinality it is often necessary to employ the use of
functions. In our case, to say A . B or vice versa it is equivalent to say that
there exists an injective function f : A → B and vice versa. Thus, our original
question can be restated that if there exist to injections f and g from A to B
and the reverse respectively, can we show that there exists a bijection from A
to B?

Theorem 4 Cantor-Schröder-Bernstein Theorem Suppose A . B and B . A.
Thus, there exits f : A → B and g: B → A both of which are injective. Then,
|A| = |B|, that is A ∼ B as there exists a bijection h: A→ B.

Proof All that is necessary to complete the proof is to construct or show ex-
istence of (the author is not attempting to present a constructive proof, see
more on constructivism here: On Constructivism) a function h: A→ B that is
bijective as this will be equivalent to proving the equinumerality of sets A and
B. Obviously, if f is onto, then we may let h = f , similarly if g is onto we let
h = g−1. We now consider the case where neither f nor g is onto.

The proof will try to make this “what-if” situation into reality by means
of construction. In short, it break up the original sets into “idealized” forms of
them where bijections may arise and then show that such subsets do indeed exist.
Now, to continue, let us say that A = X∪Y and that B = W ∪Z. We define W
to be the image of set (subset of A), X, under f , that isW = f(X). Similarly, we
define Y = g(Z). Recall that the definition of an image is f(X) = {f(x)|x ∈ X}.
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With this construction we simply have to define

h =

{
f(a) if a ∈ X
g−1(a) if a ∈ Y

Now we must show that the sets X, Y , W , and Z do indeed exist. First
notice that all elements of Y , by definition, must be in the range of g. So any
element of A that is not in Ran(g) must be inX. Thus, if we let A1 = A\Ran(g),
then A1 ⊆ X. Now, it is not necessarily true that A1 = X as there may
be elements of X that are also elements of Ran(g). Now, note that for all
a ∈ A1, a ∈ X and thus f(a) ∈ W∀a. Further note that since g is one-to-one
g(f(a)) 6= g(z)∀a, z ∈ Z. Thus, since g(Z) = Y and since g(f(a))not ∈ g(Z),
g(f(a)) ∈ X. And so, we may let A2 = g(f(A1)). Essentially, we are bouncing
back and forth between A and B using our two functions to procure more and
more elements of X. By recursion, we may state that:

X =
⋃

n∈Z+

An

Since Y is all elements of A that are not in X we have defined Y by defining
X. Similarly, we have already defined W as the image of X under f and Z as
the image of Y under g−1.

5 Appendix-Deriving the Cantor Pairing Func-
tion

Pairing functions are any bijective function that maps (computably so)
N × N to N. We will now proceed to derive this function from the familiar
diagonal argument:

Above is a visual of how the function should map each coordinate pair
to a natural. It is important to note that this kind of diagonal progression is
standard across set theory and even in some areas of computer science. For
example, a similar trick is used to count the rationals (the ”next” idiom does
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not work on the rationals as a way to count as there is no computable (in finite
time) rational directly adjacent to some rational n):

Now all that is left is to translate the graphical interpretation of our func-
tion into algebra. Now one can easily confirm from the above image (which
defines our function) that:

π(x, y) + 1 = π(x− 1, y + 1)

Then, we must find suitable boundary conditions for our function. Essen-
tially, we want to use the above definition with some boundary conditions to
find a polynomial in the real euclidean plane. Should the proof be done proce-
durally one would have first tested a first-order polynomial (however clearly this
will not work) so we will first attempt to construct a second order polynomial
that fits our criteria.

Now of course, we know that π(0, 0) = 0. This will be the initial step.
Further, may consider the function along the x and y axes. Along them we have
the following description:

π(0, k) + 1 = π(k + 1, 0)

We now consider a general 2-variate 2nd order polynomial:

π(x, y) = ax2 + by2 + cxy + dx+ ey + f

From our initial step it is obvious that f = 0. We will now apply our boundary
conditions to find:

bk2 + ek + 1 = a(k + 1)2 + d(k + 1)

Now, remember that this k applies to all naturals and is not a variable in this
context. The statement is true for all naturals k. Thus, if we simply let k = 0
we find d = 1− a. Following some algebra we arrive at

k2(b− a) + k(e− a− 1) = 0

Thus, b = a and e = 1 + a. Should we add this newly found information using
our first definition we arrive at (by writing everything in terms of a and c):

π(x, y) + 1 = a(x2 + y2) + cxy + (1− a)x+ (1 + a)y + 1

= a((x− 1)2 + (y + 1)2) + c(x− 1)(y + 1) + (1− a)(x− 1) + (1 + a)(y + 1)
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Following much algebra we find

(2a− c)(x− y) = 4a− 2

We know that at (0, 0) there is a natural number mapped by π. Thus,
if we let x = 0 and y = 0 then we see that a = 1

2 . Substituting that back
into the expression we find c = 1. Solving for the rest we find e = 3

2 and that
d = 1 − a = 1

2 and of course f = 0. Thus, we may now add this back into the
final equation:

π(x, y) =
1

2
(x2 + y2) + xy +

1

2
x+

3

2
y

=
1

2
(x+ y)(x+ y + 1) + y,

And thus we have derived the Cantor-Pairing Function.
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